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Abstract: The prognosis and treatment of patients suffering from Alzheimer’s disease (AD) have
been among the most important and challenging problems over the last few decades. To better
understand the mechanism of AD, it is of great interest to identify genetic variants associated with
brain atrophy. Commonly, in these analyses, neuroimaging features are extracted based on one of
many possible brain atlases with FreeSurf and other popular software; this, however, may cause the
loss of important information due to our incomplete knowledge about brain function embedded in
these suboptimal atlases. To address the issue, we propose convolutional neural network (CNN)
models applied to three-dimensional MRI data for the whole brain or multiple, divided brain regions
to perform completely data-driven and automatic feature extraction. These image-derived features
are then used as endophenotypes in genome-wide association studies (GWASs) to identify associated
genetic variants. When we applied this method to ADNI data, we identified several associated SNPs
that have been previously shown to be related to several neurodegenerative/mental disorders, such
as AD, depression, and schizophrenia.

Keywords: CNNs; endophenotypes; genome-wide association study (GWAS); principle components
(PCs); SNPs

1. Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease that causes a
decay in brain tissue, resulting in a loss of brain functions. It is the most common cause
of dementia, affecting roughly 5.8 million Americans aged 65 or above. AD has been
identified as the sixth largest cause of death in the US [1,2]. The approximate cost of
managing relevant finances of patients with Alzheimer’s disease was USD 277 billion
in 2018 (Alzheimer’s Association, 2018), which is expected to almost double up in the
next 20 years. There is no existing treatment to cure the disease. Unraveling the genetic
architecture of AD may help to develop new preventive and treatment strategies.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [3] is an ongoing research project
on the development and progress of the disease. Magnetic resonance imaging (MRI) tech-
nologies are used to measure brain functions and structures and to assess the genetic archi-
tecture of brain-related diseases using imaging-derived endophenotypes [4]. Data from
these scans have been used to evaluate the neurological and psychiatric distortions created
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by diseases such as Parkinson’s disease, Alzheimer’s disease, schizophrenia, autism, and
dementia. ADNI has provided a unique opportunity to combine data on MRI imaging
and genetics.

A crucial challenge in this kind of study is to represent medical images as useful infor-
mation that can ease clinical decision making [5]. Traditionally, the most used approach has
been image-on-scalar regression using mass univariate analysis (MUA). This method uses a
general linear model at each voxel and calculates a voxel-wise test statistic. One drawback
of the approach is that spatial correlation is not considered here, which may result in
low power. One of the potential remedies is to use all the voxels collectively as a tensor.
Pan et al. (2019) [6] proposed a penalized approach to select subsets from tensors after
adjusting for the other covariates. In Miranda et al. [7], tensor partition regression modeling
(TPRM) was used to predict disease status using structural medical resonance imaging
(sMRI) data. Authors Shi and Kang (2015) [8] modeled spatially varying functions as
thresholded, multiscale, Gaussian processes from a Bayesian point of view. In Feng et al.
(2019) [9], the authors developed a Bayesian scalar-on-image regression model to combine
the highly dimensional image data and clinical data to predict different outcome states.
The primary concern is that most of these statistical methods lose efficiency because of the
high dimensionality of the array images as well as the complex structure. Advances in neu-
roimaging, deep learning, and genetics have opened new directions for feature extraction as
endophenotypes to study the influence of genetics on brain structure and functions [10,11].
In [12], the authors proposed a classifier ensemble combining convolutional neural net-
works (CNNs) and ensemble learning (EL) to obtain robust learning performance. In [13],
the authors showed a comparative result of different types of deep learning methods using
MRI data from Alzheimer’s patients, whereas the authors of [14] used greedy-score-based
feature selection based on MRI images to discriminate among AD subjects; however, there
are limited discussions based on combining image data and biomarker data, which is the
primary contribution of this work.

A common approach to medical imaging analysis is to use 2D convolutional neu-
ral networks (CNNs). While two-dimensional CNNs have advantages in terms of data
handling and limited GPU usage during optimization, often, researchers only use one of
the sagittal, transverse, and coronal slices of the three-dimensional MR images, and the
lack of knowledge about how to extract complete information using 2D patches prevents
researchers from learning many sorts of important and robust information. In recent times,
research has shown that improved results are achievable when using full volumetric data.
In Zhao et al. (2021) [15], the authors used a Bayesian semi-parametric model based on
ADNI data to jointly estimate voxel-specific heritability over whole-brain imaging traits.
In Bao et al. (2021) [16], the authors performed an empirical study on amyloid imaging
and whole-genome sequencing data using spatially connected voxels and showed higher
estimated heritability measures. In this paper, we explored three-dimensional whole-brain
structure MRI data obtained from the ADNI database to avoid losing any information.

In addition, in genome-wide association analyses, researchers have extracted features
from images using FreeSurf and other advanced normalization tools to use as phenotypes.
In Grasby et al. (2020) [17], the authors used the surface area and cortical thickness of
the cortex and cortical regions in a genome-wide association meta-analysis to link several
genetic variants with them. Zhao et al. (2020) [18] found significant genetic correlations
between global functional connectivity measures and the volumes of several brain regions.
In Zhao et al. [19], the authors used consistent standard procedures via advanced normal-
ization tools on MRI data and produced one hundred one region-based and overall brain
volume phenotypes, which were further used in GWAS analyses. Many researchers have
also used the AD statuses as phenotypes to find genetic biomarkers [20]. Shen et al. [21]
presents a detailed review of several such methods.

The work in this paper focuses on two important aspects: (i) developing a completely
data-driven feature extraction approach to ensure that the extracted features are related
to AD, which is accomplished with CNN-based classification of disease status, namely,
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cognitively normal (CN), mild cognitive impairment (MCI), and Alzheimer’s disease (AD);
(ii) using these image-derived features as endophenotypes in a genome-wide association
study (GWAS) to find out the genetic variants (SNPs) possibly related to AD. From the
feature extraction point of view, it can be compared to the decomposed basis tensor layers
mentioned in Tang et al. (2020) [22]. Sections 2 and 3 describe the data and methods used
in the proposed deep learning and genome-wide association studies. Sections 4 and 5
contain the results of our study and relevant discussion, and Section 6 presents overall
concluding remarks.

2. Data

In this paper, the imaging dataset as well as the genetic data were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) website (http://adni.loni.usc.
edu (accessed on 27 February 2023). ADNI was launched in 2003 by National Institute
of Biomedical Imaging and Bioengineering (NIBIB), National Institute on Aging (NIA),
thirteen pharmaceutical companies, and two other agencies, and was headed by Michael
W. Weiner, MD, VA Medical Center and University of California, San Francisco. For most
recent information and updates, see www.adni-info.org (accessed on 27 February 2023).

We first focused on the data containing the MRI scans of the 817 ADNI-1 subjects
divided in three groups, i.e., 188 early Alzheimer’s disease (AD) patients, 400 subjects
showing mild cognitive impairment (MCI), and 229 cognitively normal patients (CN), and
for the GWASs, we considered the corresponding genetic data of 757 subjects.

Preprocessing and Description

In ADNI-1, MRI data were obtained using different of MRI scanners with respect
to particular protocols for each scanner. They included T1-weighted images that were
obtained with volumetric three-dimensional sagittal MPRAGE or similar protocols using
different resolutions [23]. The most commonly used image files were T1-weighted images
obtained using 3D sagittal MPRAGE or other similar protocols. Magnetization-prepared
rapid acquisition with gradient echo (MPRAGE) images from the LONI database under-
went image processing steps including Gradwrap, B1 non-uniformity correction, and N3
correction. Gradwrap corrects image geometry distortion due to gradient non-linearity.
B1 non-uniformity corrects intensity non-uniformity in the image. N3 is a histogram peak
sharpening method that is applied to all images. Details on image preprocessing can be
found at https://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/ (accessed on
27 February 2023).

We used Brain Extraction Tools (BET) [24] to extract the usable brain images. BET is a
part of the well-known FMRIB (Functional Magnetic Resonance Imaging of Brain) Software
Library (FSL) [25], which contains tools for image and statistical analysis for functional,
structural, and diffusion MRI brain imaging data. Using BET, we deleted non-tissue regions
from an image of the whole-brain structure (Figure 1, Left). In the whole image, a large
number of voxels are zero. This is expected, as the brain is in a more centrally enclosed part
of the image. Considering this fact and to minimize the computational cost, we removed
the encompassing regions with no information contained. Finally, an image acquisition
matrix of dimensions 155 × 155 × 95 was used in further studies.

http://adni.loni.usc.edu
http://adni.loni.usc.edu
www.adni-info.org
https://adni.loni.usc.edu/methods/mri-tool/mri-pre-processing/
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Figure 1. (Top row) An original MRI image and the corresponding axial views. (Second row) Brain
image extracted using BET tool and its axial views. (Bottom three rows) Segmentation of the extracted
brain image using FAST; from top to bottom: gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) images, respectively.

3. Methods
3.1. Classification and Feature Extraction

Using deep learning to detect and classify diseases has gained a lot of attention in
recent years. Researchers from across the globe use convolutional neural networks (CNNs)
for imaging as well as sequential [26] problems. Numerous studies in the last few years
have focused on detecting Alzheimer’s disease and other types of dementias. The timely
detection and diagnosis of Alzheimer’s disease help to control or slow down the progression
of the disease. Researchers have used 3D CNN and its layers to understand the behavior of
disease spread.

In Kruthika et al. [27], autoencoders were used to extract features from 3D patches,
obtaining a better result than when using traditional 2D patches. In [28], the authors
show that the performance of the classification problem in case of dermoscopic analyses
significantly outperforms that of raw images. Researchers have also used LSTM (long
short-term memory) layers on top of three-dimensional convolutional layers to improve
the performance of models. Three-dimensional fully connected CNN layers were obtained
for deep feature representations, and LSTM was applied on these features to improve the
performance. In Gao et al. [29], the authors improved the accuracy of AD, lesion, and
normal aging classification to 87.7% using seven-layer deep three-dimensional CNN on
285 volumetric CT head scans from Navy General hospital, China. In [30], the authors
established how we can take advantage of brain imaging to define an auxiliary diagnostic
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process. In the literature of medical imaging, 3D CNN models have been proposed for the
classification of 3D images, as they can fully utilize the context information. However, the
development of 3D CNNs has been limited to simple architectures and small image sizes
due to the high computational cost. In this section, we describe the 3D CNN architectures
we used for classification and feature extraction. We developed 3D CNN models with
different architectures and different depths to classify the study participants into three
categories, namely, AD, MCI, and CN, and extracted the output from a fully connected layer
of 100 vectors, known as neurons, to be used as automatically extracted features. To further
use the extracted features as endophenotypes in GWASs, we reduced the dimension of the
feature vectors using principal components analysis (PCA) and then used the top 10 PCs
as endophenotypes.

3.1.1. Whole-Brain Structure

We started the study by considering the extracted brain images obtained using BET.
We used a 14-layer 3D convolutional neural network model (Figure 2) and added max
pooling layers for dimension reduction and 3D convolution, as a natural adaption of 2D
convolution. We also included batch normalization to each pooling layer. Throughout the
CNN architecture, we used rectified linear units (ReLU) [31] as the default activation func-
tion, except for softmax [32] in the last layer for classification. In the proposed CNN model,
we performed hyperparameter tuning to obtain the best possible results by modulating pa-
rameters such as kernel size, steps, number of channels, and dropout rate [33]. To minimize
the over-fitting issue, we used two dropout layers with 30% probability.

conv(64@3×3×3)+
MP(2×2×2)+BN

conv(64@3×3×3)+
MP(2×2×2)+BN

conv(128@3×3×3)+
MP(2×2×2)+BN

conv(256@3×3×3)+
MP(2×2×2)+BN GA Pool+

Dense(256)+
Dropout(.3)

Feature(100×1)+
Dense+Dropout(.3)

Softmax(3×1)
(CN/MCI/AD)

Figure 2. Convolution neural network architecture used for the whole-brain structure. From the
penultimate dense layer, 100 neurons are extracted as the features.

From the CNN architecture, we extracted the output from the penultimate layer, a fully
connected layer with 100 neurons, and used it as the input to a logistic regression model
or support vector machine (SVM) for classification. Furthermore, we applied transfer
learning algorithms. Transfer learning-based neural network models have recently gained
popularity. With some necessary modifications, we implemented the idea of transfer
learning models such as AlexNet, ResNet50, and VGG16 in our study.

AlexNet [34], a convolutional neural network, was designed by Alex Krizhevsky
in collaboration with Ilya Sutskever and Geoffrey Hinton to compete and win the first
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place at the ImageNet Large Scale Visual Recognition (ILSVR) challenge. The Visual
Geometry Group (VGG16) [35] convolutional neural network proposed by K. Simonyan
and A. Zisserman secured second place at ILSVRC-2014 and made an improvement over
AlexNet by using multiple 3 × 3 filters. Residual Network (ResNet) [36], based on a residual
function, won the first prize at ILSVRC-2015. We used the three-dimensional counterparts
of their models and applied a transfer learning technique by replacing the top layer of the
network with our classification layer.

To avoid over-fitting in our neural network architectures, we opted for L2-norm regular-
ization and implemented image augmentation by rotating the images by −20, −10, −5, 5, 10,
and 20 degrees, respectively, i.e., for each input image in the training set, we had six more
images. In the model architectures, ReLU layers following convolution layers were used
to introduce the non-linearity necessary for class discrimination. The pooling layers were
used to ensure that neurons did not learn redundant information and the model did not
grow too large while achieving some location invariance. One of the primary concerns of
the study was to find out genetic variants associated with AD; hence, we decided to build a
binary classification model as well as one based on AD and CN subjects only.

3.1.2. Multi-Branch CNN

Using smaller parts of a 3D image often enables one to focus on the most locally
relevant information in classification. In our study, we divided the whole-brain structure
along the x-, y-, and z-axes in three parts, respectively, resulting in 27 smaller and over-
lapping 3D image patches. We individually trained a separate 14-layer CNN architecture
with each of these pieces. The validation accuracy of these smaller patches was found to
be noticeably higher for some parts than the test accuracy of the whole-brain CNN model.
Thus, we selected the top five CNN models based on the accuracy levels and used them
to build the final CNN model for feature extraction (Figure 3). Similar to the whole-brain
image scenario described above, we collected a layer of fully connected neurons and used
PCA to obtain the top 10 PCs to be further used in the genome-wide association studies.

Figure 3. Pipeline of feature extraction using a multi-branch CNN model.

3.2. Segmentation

We applied FMRIB Automated Segmentation Tool (FAST) [37] in the FSL software
package to obtain individual 3D images corresponding to three tissue types, namely, gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) (Figure 1, Right). Further,
we carried out CNN-based feature extraction and then GWASs on these segmented images
similar to those discussed for whole-brain and multi-branch structures.

3.3. GWAS

One of the most important risk factors of AD is a family history of dementia.
Families with multiple members affected by AD are more susceptible to AD. Though we
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have made significant progress in research related to AD, perhaps, most AD-related genetic
variants and genes are still unknown.

In this work, we applied PCA to choose the top 10 principal components (PCs) from the
extracted feature vectors. Each PC was then used as an endophenotype to conduct GWASs
(while adjusting for additional covariates such as age, sex, education, handedness, etc.).
The findings of the GWAS corresponding to the most relevant CNN models have been
discussed in the next section.

3.4. PC vs. Gray Matter Volume of Regions of Interests (ROIs)

A number of recent studies have shifted their focus to developing machine learning
models that can be easily interpreted. In Ribeiro et al. [38], the authors discuss using
explainable methods to be able to trust the predictions made by “black-box” models such
as CNNs. In this work, we used linear regression to investigate the relations between the
extracted principal components and some commonly used ROIs already available on the
ADNI website, such as the GM volumes of left hippocampus (HIPPL), para left hippocam-
pus (PARAHIPPL), cerebellum, etc., extracted from 1.5 T ADNI MPRAGE MRI segmented
gray matter maps using longitudinal VBM (voxel-based morphometry). These ROIs have
been previously shown to change significantly between AD and control subjects [39].

3.5. Identifying Genetic Pathways

Recent advancement in the scientific world has seen a broader spectrum being created
for identifying genetic pathways and for the development of targeted therapies [40,41].
In this study, we worked with the principle components and the derived GWAS results to
identify any affected pathways. We used Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA GWAS (version 1.5.1)) [42] software to annotate and
interpret the GWAS results obtained from the PCs. The SNP2GENE function in the soft-
ware was used to input the GWAS summary results and to identify the leading SNPs.
In a second step, we used the GENE2FUNC function to annotate the genes and possibly
enriched pathways.

3.6. Evaluation Criteria

The receiver operating characteristic (ROC) [43] curve is obtained by plotting the true
positive rate (TPR) against the false positive rate (FPR). The area under the ROC curve
(AUC) is one of the most widely used metrics for classification. The training AUCs reported
in the paper are based on validation sets. We used the AUCs obtained from the models to
compare their prediction accuracy. We split the whole image dataset into training (80%),
validation (10%), and test (10%) subsets and calculated the (test) AUC with the test subset;
then, the above process was repeated 10 times, and we calculated the average (test) AUCs
reported in this paper. The models with the highest prediction accuracy were used for
the GWASs.

4. Results
4.1. Whole-Brain Structure

The training AUC of the CNN model corresponding to the images of the whole-brain
structure was 0.88, and the test AUC was 0.72. By performing GWASs with each of the
top 10 PCs as the phenotype yielded 149 SNPs at p-value ≤ 5 × 10−6, including rs2075650,
which has been found to be consistently associated with AD [20,44]. The Apolipoprotein E
(APOE) gene and the TOMM40-APOE locus, tagged by rs2075650 in the translocase of outer
mitochondrial membrane 40 (TOMM40) gene, are both considered to be responsible for
AD. TOMM40 rs2075650 (chromosome 19q13.32) has been one of the most important SNPs
found to be associated with AD. TOMM40 encodes the translocase of the mitochondrial
outer membrane (TOM) complex through mitochondrial channel protein TOM40 [45].
Changes in the mitochondrial metabolism have been accepted as a feature in patients with
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Alzheimer’s disease. The eMERGE network showed an association between rs2075650 and
AD using electronic medical records [44].

Next, we implemented logistic regression considering the extracted feature vectors
as inputs for corresponding subjects, and the model produced a training AUC of 0.78
and a test AUC of 0.59. Although the last two layers of the CNN were similar to logistic
regression, due to L2/ridge-type regularization (i.e., weight decay) in the former, while the
dimension of the features (i.e., 100) was high relative to the sample size in a few hundreds,
there was a substantial performance difference between the two. Similarly, support vector
machine (SVM) yielded training and test AUCs of 0.79 and 0.61, respectively. CNN models
based on transfer learning, such as AlexNet, ResNet50, and VGG16, produced a training
AUC within the range of 0.84–0.87 and a test AUC of 0.69–0.72. None of these models
provided improved accuracy measures in the classification problem and thus were dropped
in future consideration for feature extraction and GWASs.

Over-fitting and small sample sizes are two of the main growing concerns regarding
neural network models, especially in medical image data analysis. We trained the CNN
model with augmentation by rotating the images by six different angles. Introducing the
augmentation of the training sample made the input richer with information and improved
the AUC measure of the test dataset up to 0.75. The GWAS based on the features derived
from this model yielded 3 SNPs at p-values ≤ 5× 10−8, including rs2075650, rs1158059 [46],
and rs823955 [47], and 35 SNPs at the marginal significance level of 5 × 10−6. This shows
that our method works better than existing methods based on ROIs, such as FreeSurfer or
voxel-based morphometry (VBM) [48,49]. In [49], the authors presented a table comparing
the p-values of several SNPs tested on a set of univariate traits.

Many research studies have been conducted with the primary focus on identifying
the genetic differences between AD and CN subjects. For that purpose, we used a CNN
model to address this binary classification problem, which yielded a training AUC of 0.96
and a test AUC of 0.90. A genome-wide association scan produced 2 SNPs at the p-value
significance level of 5 × 10−8 and 53 SNPs at 5 × 10−6, with the inclusion of rs7836628
(4.21 × 10−8) and rs12708438 (4.33 × 10−8) SNPs. This list of SNPs also includes rs2196315
(chr8:130787049) (8.02 × 10−8), corresponding to gene ADCY8 (Intron Variant), which has
been found to be connected with dissociative amnesia (corresponding to rs726411, located
in the 8q24.22 region [50], and rs263238 [51] with p = 2.40× 10−6 ), whereas SNP rs2395095
of the Adenosine Kinase (ADK) gene has been previously found to be responsible for
triggering cognitive impairment and seizures [52,53]. The Manhattan plot on the top-left
panel of Figure 4, corresponding to the AD vs. CN classification, shows a large number
of significant SNPs on chromosome 15 (chr15:29176591, chr15:29175402, chr15:29190239,
and chr15:29225416), which has been an increasing focus in the field of neurology and
has shown associations with several neurodegenerative/mental/brain diseases, such as
dyslexia, autism, ring 15 chromosome syndrome, Angelman syndrome, and hyperlexia [54].
Table 1 summarizes the most significant SNPs corresponding to the principal components
obtained with the discussed models along with their chromosomal positions and p-values
from the relevant GWASs.

Table 1. Models based on whole-brain images with test AUCs (95% confidence intervals (CIs)) as
well as contributing principal components and significant SNPs with their chromosomal positions
and p-values. Novel and known SNPs are indicated by N and K, respectively.

Model Test AUC (CI) PC SNP (N/K) Chr p-Value
ine Augmentation with

respect to whole brain 0.75 (0.717, 0.782)
3 rs1158059 (K) [46] 1 2.06 × 10−9

2 rs2075650 (K) ([44]) 19 4.58 × 10−8

4 rs823955 (N) 3 4.72 × 10−8

ine AD vs. CN
binary classification 0.90 (0.885, 0.914) 4 rs7836628 (K) [47] 8 4.21 × 10−8

7 rs12708438 (N) 15 4.33 × 10−8
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Figure 4. Manhattan plots. (Top panels) The left panel corresponds to binary classification of AD vs.
CN; the panel in the middle is for whole-brain structure with augmentation; and the right panel is for
the multi-branch model based on the whole-brain structure. (Bottom panels) The left panel is for the
multi-branch model based on GM images; the middle panel is for the multi-branch model based on
WM images; and the right panel is for the multi-branch model based on CSF images.

We separately used the CNN model discussed in the whole-brain section for the GM,
WM, and CSF segments. The training and test AUCs of the CNN models in case of GM
images were found to be 0.82 and 0.70, respectively. Similarly, the training and testing
measures of AUC for WM images were 0.88 and 0.68, and those for CSF images were 0.77
and 0.54, respectively. The relevant GWASs did not identify any significant SNPs at a
p-value of 5 × 10−8.

4.2. Multi-Branch CNN

For the multi-branch CNN, we trained a separate CNN model for each of the 27 sub-
parts of 3D image patches. We selected the top five patches and combined them together to
obtain our final model. The training accuracy obtained for the final model was 0.86, and
the testing accuracy thus obtained was 0.76. The feature vector was extracted from the
final model to obtain the top 10 principal components. The GWAS conducted with these
PCs identified 8 SNPs at p-value 5 × 10−8 and 87 SNPs at a p-value of 5 × 10−6. The list of
significant SNPs includes rs1397645 (ch4:121036579), corresponding to Neuron Derived
Neurotrophic Factor (NDNF), which helps to protect and culture hippocampal neurons
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against amyloid beta-peptide toxicity [55]. Next, we used the multi-branch modeling
technique on GM images. The training and test AUC measures obtained were 0.84 and 0.74.
With the GWAS study, we identified that 35 SNPs were significant at a p-value of 5 × 10−6.
This list of SNPs includes rs173754 (3.33 × 10−6), which has been shown to be responsible
for ADHD (attention deficit hyperactivity disorder).

This list of SNPs includes rs9257694 (chr6:29306709) (1.55 × 10−6), which is associated
with OR14J1 (olfactory receptor family 14 subfamily J member 1). Though no concrete
conclusions have been drawn, abnormalities and impaired functions of the olfactory system
have been reported in AD, and these symptoms have been seen to appear earlier than many
other symptoms. Table 2 gives us a glimpse of the most significant SNPs corresponding
to the principal components obtained with the multi-branch models, along with their
chromosomal position and calculated p-values from the relevant GWAS studies.

Table 2. Multi-branch models with test AUCs (95% confidence intervals (CIs)) as well as contributing
principal components and significant SNPs with their chromosomal positions and p-values. Novel
and known SNPs are indicated by N and K, respectively.

Model Test AUC (CI) PC SNP (N/K) Chr p-Value
ine

Multi-branch 0.76 (0.729, 0.790)
4 rs1397645 (K) [55] 8 9.40 × 10−8

7 rs10514441 (K) [56] 16 2.67 × 10−9

9 rs17148126 (N) 7 9.59 × 10−9

ine Multi-branch on
GM images 0.74 (0.707, 0.772) 2 rs9257694 (N) 6 1.55 × 10−6

3 rs173754 (N) 5 3.33 × 10−6

The multi-branch model based on the WM images produced AUC measures of 0.82
and 0.70 on the training and test datasets, respectively. The GWAS based on this model
identified 35 SNPs (Figure 4, bottom panel on the left) at the marginal significance level of
5 × 10−6. On the other hand, the model based on the CSF images produced AUCs of 0.77
on the training data and 0.66 on the test data, and a further GWAS analysis yielded 21 SNPs,
but the SNPs were not found to be associated with any well-known gene. The list of
significant SNPs includes rs11710427, rs15820, rs9791663, rs9791663, rs3132030, rs10880942,
etc. The bottom panels of Figure 4 show the Manhattan plots for all the segment-wise
multi-branch models. The Q-Q plots corresponding to all the six Manhattan plots show
the corresponding p-values well calibrated with the genomic inflation factor (lambda)
values, all very close to 1 (within a range of 0.989 to 1.033). The plots are included in the
Supplementary Materials.

4.3. PC vs. Gray Matter Volumes of ROIs

To enhance the interpretation of the extracted features, we investigated the relation
between the mean gray matter volumes of brain ROIs and principal components using
linear regression. Figure 5 shows for the second and third principal components obtained
from the whole-brain structure with augmentation. The x-axis shows the ROI indices, and
the y-axis shows the − log(p_value) obtained from the regression. The results demonstrate
that the mean gray matter volumes of the ROIs, such as left/right hippocampus (HIPPL/R),
right parietal superior (PARIETSUPR), and several parts of the cerebellum (left/right hemi-
spheric lobule VIIb, CEREB7BL/R; left/right hemispheric lobule VIII, CEREB8L/R), show
a higher level of significance than the other regions. However, using the principal compo-
nents, we found SNPs that were not identified by only using the ROIs. One of the reasons
may be that apart from the major effect of one brain ROI, the principal components may
also have information on other brain regions. For instance, the third PC of the augmented
model was found to be associated with rs1158059, corresponding to gene SNAP91, which
has also been found to be involved in AD pathways [46]; the seventh principal component
of the multi-branch model with the whole-brain method identified SNP rs10514441, related
to gene WWOX, which plays an important role in AD through interactions with its protein
partners, and cell pathology and degeneration [56]. These brain regions [57,58] have been
previously shown to be associated with AD. Moreover, SNP rs2075650, associated with the
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second principal component (Table 1), has been shown to be strongly associated with the
hippocampal volume of the brain [20,48]. The relations between the principal components
and the available gray matter volumes of the ROIs give credibility to the used models and
enhance the interpretability of the models. See Supplementary Materials for more plots.
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Figure 5. Marginal associations between each of the brain ROIs and one principal component.
The x-axis shows the different ROI indices, and the y-axis shows the − log(p_value) obtained from
the regression. The left panel is for PC2, and the right one is for PC3, with both having been obtained
with whole-brain augmentation.

4.4. Genetic Pathway Identification with Enrichment Analysis

We followed the two-step method described in FUMA GWAS software using the
SNP2GENE and GENE2FUNC functions. For illustration purposes, we present the results
from only one principle component (the seventh one) from the multi-branch model in this
section. From a total of 511062 SNPs, 265 candidate SNPs and 7 lead SNPs were identified.
These SNPs were mapped to seven independent genomic loci and were further mapped
to five genes. Further, we used the GENE2FUNC function and found that two genes
from chromosome 16 are related to traits such as adolescent idiopathic scoliosis [59] and
total PHF-tau (SNP × SNP interaction) [60]. Due to the small sample size, we could not
identify a sufficient number of even marginally significant SNPs and thus genes to detect
enriched pathways.

5. Discussion

In this paper, we explored completely data-driven and automated feature extraction
and used these features as phenotypes in the corresponding GWASs primarily based on two
techniques: the first corresponds to CNN models trained on whole images, and the second,
to multi-branch CNN models trained on divided sub-parts of whole images. We noticed
that the initial CNN model based on the whole-brain structure was not the best-performing
model in terms of prediction accuracy. The follow-up GWASs on the model also failed to
capture significant SNPs at lower p-value cut-offs. One problem that the model suffered
from was over-fitting. To tackle the issue, we implemented an augmentation method and
performed the same steps on the augmented set of images, producing much more accurate
results, along with significant SNPs (Table 1). Next, we adopted the binary classification
problem between AD and CN subjects, instead of the existing tertiary classification problem.
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The used model, as expected, performed better, reaching up to 0.90 AUC measure on the
test dataset. The relevant GWASs revealed significant SNPs at the usual genome-wide
significance level of p-value ≤ 5 × 10−8 (Table 1).

The most important contribution of the paper is perhaps the idea of multi-branch
CNN models, whereby we separately trained convolutional neural network models on
27 sub-parts of each whole-brain image and identified the top five patches with the highest
validation accuracy to be included in the final model. Focusing only on the pertinent patches
of the images helps us not only to localize relevant brain regions but also retrieve maximum
local information, thus boosting the AUC measures of the models. Features pulled out from
these models also pointed out more significant SNPs than their whole-image counterparts
(Table 2).

Using the proposed machine learning method, we assessed the importance of brain
image voxels in light of classification, thus allowing patches crucially associated with AD
to be identified. Cumulatively, this study shows that based on sMRI data, an advanced
machine-based neuroimaging approach can provide improved accuracy in AD detection
and can also help to identify AD-related biomarkers.

Alzheimer’s disease has been one of the primary focuses of discussion for over a
decade now because of its complex etiology. The failure of the “one-drug-for-all” idea has
turned the attention of the scientific community towards targeted therapies. We expect
that the SNPs (or genes) identified in this study can pave a path forward to guide this
exploration in a positive direction.

6. Conclusions

Alzheimer’s disease is the most common form of dementia. The worldwide number
of patients suffering from this disease is increasing everyday. The disease starts to develop
years before the first noticeable symptoms start to appear. The study in this paper focuses
on two major issues related to AD. Firstly, it proposes a method of automated feature
extraction, compared with focusing on some pre-defined ROIs using existing software,
through the classification of AD patients. It shows that using multi-branch CNN models,
instead of the model for regular whole-brain structures, provides an increase in prediction
accuracy and thus should be considered as an option for future brain-related research.
It could be worthwhile to look into additional comparable datasets so that the underlying
CNN algorithm can learn from more data. Secondly, the study identified the genetic
variants related to AD. The work links the associated SNPs from the available genetic
data to the imaging data of the brain. Some of the SNPs identified in our work have
been previously shown to be related to mental/brain disorders, including schizophrenia,
depression, and dementia.
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